|   Electron Microscopy Solutions

      
Electron Microscopy Solutions
      

Image Gallery

1003 images found   |   View all
Back  | 1 2 3 4 5 6 7 8 9 10  ...  | Next 

Product

SEM

TEM

DualBeam

FIB

Field Electron Emission Elements

The scanning electron microscopes (SEM)-image of field emitters, formed by focused ion beam milling. The diameter of each tip less than 100 nm.

Courtesy of Alexey Kolomiytsev

Taken by DualBeam microscope

Magnification: 57,947x
Detector: SE
Voltage: 10 kV
Vacuum: high vacuum
Horizontal Field Width: 4.42 μm
Working Distance: 5.1 mm
Spot: 3.0 nA

Sticky Plaster

Image of fibers on the adhesive side of a sticky plaster.

Courtesy of Janna Collier

Taken by Quanta SEM microscope

Magnification: 1200x
Detector: SE
Voltage: 10.0 kV
Working Distance: 12.09 mm
Spot: 3.0 nA

Purpurin

Purpurin with silicon balls

Courtesy of Dr. Mariana Stankova , URV

Taken by Quanta SEM microscope

Magnification: 180x
Sample: purpurin particles
Detector: LFD
Voltage: 15 kV
Vacuum: 0.68 Torr
Horizontal Field Width: 373 um
Working Distance: 14.4
Spot: 3.9

Bacteria

Bacteria (one of them is a bacterium) are very small organisms. They are prokaryotic microorganisms. Bacterial cells do not have a nucleus, and most have no organelles with membranes round them. However, they do have DNA, and their biochemistry is basically the same as other living things.

Courtesy of Mr. sathish - , Christian medical collage.vellore (CMC)

Taken by Tecnai microscope

Magnification: 8200 x
Sample: cell culture
Detector: SE
Voltage: 60 kv
Vacuum: 5 mbar
Horizontal Field Width: 5.00 μm)
Working Distance: 5.2
Spot: 1.0

Cigarette Filter Fibers II

Cross-transverse view of a cigarette filter, showing cellulose acetate fibers. Ingestion or inhalation of fragments of cigarette filter fibers is a health problem for almost all smokers, but also contributes to the formation of lung cancer. Smoking is a trap. Quit now!

Courtesy of Mr. FRANCISCO RANGEL , MCTI/INT

Taken by Quanta SEM microscope

Magnification: 5000x
Sample: Cigarette filter fibers
Detector: MIX: SE plus BSE
Voltage: 20 kV
Vacuum: 110 Pa
Horizontal Field Width: 59.7 µ
Working Distance: 15.1
Spot: 3.0

Martian water

Droplets of water on a Martian landscape! actually on a piece of sandstone

Courtesy of Dr. Jim Buckman , Heriot-Watt University

Taken by SEM microscope

Magnification: 714
Sample: water and sandstone
Detector: GSE
Voltage: 20 kV
Vacuum: 6.5 Torr
Working Distance: 8.3 mm
Spot: 4.8

CleanCHK3

Taken by Explorer 4 CleanCHK microscope

µ-Lettuce Residue

Organical residue, rest of photoresist, around microelectronic structure

Courtesy of Allanic Fabien

Taken by Nova NanoSEM microscope

Magnification: 27,000x
Detector: TLD SE
Voltage: 10 kV
Vacuum: 2.92 10-9 bar
Horizontal Field Width: 11 µm
Working Distance: 5 mm
Spot: 1.3 nA

Graphene

This image shows graphene over Si substrate. The image was acquired using an ultra low voltage electron beam (100V), this is why graphene shows such a solid contrast comparing to 1-2 kV common images.

Courtesy of Mr. Marcos Rosado , Institut Catala de Nanociencia i Nanotecnologia

Taken by Magellan XHR SEM microscope

Magnification: 100.000x
Sample: Graphene on Silicon
Detector: TLD
Voltage: 100V
Vacuum: High Vacuum
Horizontal Field Width: 3 µm
Working Distance: 2 mm
Spot: 25 pA

Ghostbusters

STEM image of 200 nm polystyrene nanospheres shadowed with gold on formvar-crabon grid.

Courtesy of Mr. Adolfo Martínez , Universidad de Málaga

Taken by TEM microscope

Magnification: 11,000X
Sample: polystyrene nanospheres
Detector: STEM
Voltage: 200 kV
Vacuum: 0.00001 Pa
Horizontal Field Width: 22 μm
Spot: 6.0

Dance of the spinning tops II

Microstructures grown by MOCVD (metalorganic chemical vapour deposition). Courtesy of Dr. Marco Antonio Sacilotti who is co-author of the image and responsible for this scientific research.

Courtesy of Mr. FRANCISCO RANGEL , MCTI/INT

Taken by Quanta SEM microscope

Magnification: 5,000x
Sample: Gallium Microsphere grown by MOCVD
Detector: LFD
Voltage: 20 kV
Vacuum: 120 Pa
Horizontal Field Width: 59.7 µm
Working Distance: 12

Iron Sulfide Spheres On Calcite Crystal

IRON SULFIDE SPHERES ON CALCITE CRYSTALS IN PORES OF SEDIMENTARY ROCKS.

Courtesy of Eduardo Palacios

Taken by DualBeam microscope

Magnification: 50000x
Detector: TLD
Voltage: 18 kV
Horizontal Field Width: 5.12 μm
Working Distance: 5.1 mm

Coralline Algae

Coralline Algae

Courtesy of John Perry

Taken by Quanta SEM microscope

Magnification: 8000x
Voltage: 5 kV
Horizontal Field Width: 37.3 μm
Working Distance: 8.2 mm
Spot: 2 nA

Steps to build a ZnMnO nanoparticle

Different steeps in the formation of nanoparticles ZnMnO, these nanoparticles are able to trap air pollutants

Courtesy of Dr. Irma Estrada , Instituto Politecnico Nacional

Taken by Quanta 3D microscope

Magnification: 3 000 x
Sample: gold
Detector: SE
Voltage: 10.0 kV
Vacuum: .3 mbar
Horizontal Field Width: 42.7
Working Distance: 4
Spot: 3.0

TSV Sectioned and Imaged 2

TSV sectioned and imaged by a Plasma-FIB system running an ICP ion source.

Courtesy of Fraunhofer IWM Halle, prepared in the ENIAC ESIP project

Taken by Vion Plasma microscope

Detector: CDEM
Horizontal Field Width: 21.3 μm
Working Distance: 16.5 mm

Folivora - Pile of Microorganisms

Pile of microorganisms

Courtesy of Gokhan ERDOGAN

Taken by Quanta SEM microscope

Magnification: 91x
Sample: Microorganism
Detector: ETD
Voltage: 2.0kV
Vacuum: 1.58e-5mbar
Horizontal Field Width: 3.28mm
Working Distance: 6.3mm
Spot: 3.0

Magnetic field of earth perturbed by a sun storm

The picture was taken after the growth by CVD of silicon nanowires on a copper foil with gold on top. When I saw it I remembered the perturbation caused by sun storms on magnetic field of the earth. These nanowires will be used to manufacture anodes of ion-Li batteries.

Courtesy of Isidoro Ignacio Poveda Barriga

Taken by SEM microscope

Magnification: 20,000x
Sample: Cu, Au, silicon nanowires
Detector: SE
Voltage: 10 kV
Working Distance: 5,2

Cretaceous sedimentary rocks

Cretaceous sedimentary rocks which occur on Snow Hill Island Antarctica, include spectacular mounds dominated by fossil bivalves. In amongst the bivalves are complex carbonate mineral cements, interpreted to have formed as a result of methane seeping through the sediments on the Cretaceous sea floor. The carbonate cements are complex but this QEMSCAN fieldscan image allows us to map the texture of polished thin sections of these spectacular rocks. Image size is 11mm square and mapped at 5 microns x-ray resolution. Image courtesy of Dr Duncan Pirrie and Dr Gavyn Rollinson, CSM,UOE,UK.

Courtesy of Dr Duncan Pirrie and Dr Gavyn Rollinson

Taken by QEMSCAN microscope

Magnification: 45x
Detector: X-ray map via Bruker SDD
Vacuum: 2x10-06 Torr
Horizontal Field Width: 300um
Working Distance: 23mm

The WEB

Grid used for sample growth and TEM observation

Courtesy of Cyril GUEDJ

Taken by DualBeam microscope

Magnification: 20,000
Voltage: 10 kV

GOLD BUSH

GOLD LAYER ON DIAMOND, DIAMOND IS PATTERNED BY FIB

Courtesy of Dr. aravindan sivanandam , IIT DELHI

Taken by Quanta 3D microscope

Magnification: 20000
Sample: gold on diamond
Detector: se
Voltage: 16kv
Horizontal Field Width: 3 micron
Working Distance: 4

Water droplets on leaf

Water droplets on the upper side of a leaf, showing the hydrophobic nature of the leaf surface

Courtesy of Dr. Jim Buckman , Heriot-Watt University

Taken by SEM microscope

Sample: Leaf and water
Detector: GSE
Voltage: 20 kV
Vacuum: ESEM mode 6.5 Torr
Horizontal Field Width: approx 400 microns
Working Distance: 8.4 mm
Spot: 5.2

Ricania speculum: detail of eggshell with micropyle

Ricania speculum: detail of eggshell with micropyle, deposed in a sprig.

Courtesy of Dr. Riccardo Antonelli , Department of Agriculture, Food and Environment, Pisa University

Taken by Quanta SEM microscope

Magnification: 800x
Detector: ETD
Voltage: 7.50 kV
Vacuum: High Vacuum
Horizontal Field Width: 373 μm
Working Distance: 6.00 mm
Spot: 4.5

Arsenopyrite and pyrite in gangue

Characteristic rhombic crystals of arsenopyrite in gangue.

Courtesy of Mr. Ivan Jimenez Boone , Peñoles

Taken by MLA microscope

Magnification: 700x
Sample: Mineral feed
Detector: BSE
Voltage: 25kV
Working Distance: 10.0
Spot: 7.2

Gamma Prime precipitates in Ni Superalloy

TEM Dark Field of Gamma Prime precipitates in aNickel based Superalloy for aircraft engine turbine disk.

Courtesy of Mr. Nazé Loeïz , Ecole des Mines de Paris

Taken by TEM microscope

Magnification: 30,600
Voltage: 300 kV

Wave of salts

Salt particles scattered over a SiN substrate

Courtesy of Mr. Marien Bremmer , Leiden Institute of Physics

Taken by Tecnai microscope

Sample: SiN / Salt
Voltage: 200
Spot: 3.0